产品中心
耐火变频电缆NH-BPVVPP价格
变频器工作原理 变频器的工作原理是把市电通过整流器变成平滑直流,然后利用半导体器件组成的三相逆变器,将直流电变成可变电压和可变频率的交流电,由于采用微处理器编程的正弦脉宽调制方法,使输出波形近似正弦波,用于驱动异步电机,实现无级调速。
目前的变频电源是通过电力半导体器件调压,较大程度上改变了波形特性,从而对电机和电缆带 来了新问题。变频器中通常通过大功率的自关断开关器件(BJT、IGBT等)进行整流、然后对直流电压进行PWM逆变,结果是在输入输出回路产生电压的高次谐波,干扰供电系统、负载及其他邻近电气设备,尤其是控制系统的I/O信号。同时由于高次谐波的存在,使得变频电缆应具有更高的绝缘裕度。在实际使用过程中,经常遇到变频器高次谐波的干扰问题,下面简单介绍谐波产生的机理、传播途径等问题。变频器的主回路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压,经滤波电容滤波及大功率晶闸管开关元件逆变为频率可变的交流电压。在整流回路中,由于不规则的矩形波的存在,波形按傅立叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。在逆变回路中,输出电流波形是PWM载波信号调制的脉冲波形,对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM高载频可达15kHz。同样输出回路电流也可分解为只含正弦波的基波和其他各次谐波,高次谐波电流通过电缆向空间辐射,干扰邻近电气设备。因此,针对变频器的工作特点,变频电缆应着重解决以下问题:1电缆本体对外发射电磁波,抑制高次谐波通过电缆对外界的干扰。2脉冲电压对绝缘的影响,防止脉冲电压对 电缆的影响。变频电缆从电缆结构设计上解决防干扰能力及绝缘的可靠性上显得尤为重要。
变频电缆的工作特点: 电缆本体对外发射电磁波,一般变频家用电器为单相供电,长度很短,功率也较小,设计时已将变频电源、连接电缆和变频电机一并设置在金属壳内,抑制了电磁波对外发射。但是在工业领域内,电机功率较大,连接变频电机和变频电源之间的电缆长度长,在工作时电缆就是高频电磁波向外发射的有效载体,对于周围邻近地区的通信工具(如无绳电话)或调幅接受器(如收音机调幅波段)将产生干扰,有时情况也比较严重,称之为电磁波的环境污染,国外已对这种电缆提出要求,我们也已提出了相关EMC测试及控制方法。虽然目前没有国家规范规定电缆发射电磁波造成环境污染的考核指标,但抑制对外高频干扰是做到的。要想达到高频干扰的有效抑制,变频电缆屏蔽结构是尤为重要的。屏蔽结构是抑制对外高频干扰佳方法,而屏蔽结构分为铜丝编织屏蔽及铜随着铜丝编织密度的增大,屏蔽抑制系数也不断增长,编织密度越大,屏蔽效果越好。反之,当编织密度较低时,屏蔽抑制系数也偏低当电缆采用铜带屏蔽时,其屏蔽抑制系数是较高的,采用铜丝编织屏蔽时,其屏蔽效果才与铜带屏蔽相当。所以,变频电缆应尽量采用铜带屏蔽,以确保屏蔽效果。制造者习惯 采用铜线编织屏蔽,实际上这并不是好方法,材 料消耗大、加工速度慢、屏蔽效果不是理想。采 用铜带搭盖绕包并轧纹是较为先进的结构和工艺,形成了全封闭金属层,可达到有效的屏蔽功能。当电缆采用铜带屏蔽时,不同厚度铜带对屏蔽效果的影响也应予以考虑,铜带厚度不能太薄,以保证抑制电磁波对外发射。如图6所示,当铜带厚度较薄时,屏蔽抑制系数也很低,屏蔽效果不好,而随着铜带厚度的增加,其屏蔽效果得到了提高,但应注意,当铜带达到厚度后,屏蔽抑制系数的数值变化不再明显。 脉冲电压对绝缘的影响变频电源的频率调节范围较宽,不论频率高低,具有一个主频率的波形轮廓,它包含了许多高次谐波,作为一种行波经多次反射,幅值叠加可达到工作电压数倍,电缆越长,幅值越高,若电缆绝缘系数不高,可能被击穿。因此为确保电缆,我们从以下三个方面着手:增大绝缘厚度,提高绝缘耐电压能力,同时选用绝缘性能较好材料。电缆绝缘厚度可采用对应电压等级的规定,若适当加厚,当然更为可靠,这对变频电缆更为有利。一般陆用情况下,采用聚氯乙烯绝缘并不理想,因为其介质系数偏大,在交变电场作用下,其介质损耗也很大。而采用交联聚乙烯绝缘则较为合适,交联聚乙烯材料介质系数低,介质损耗小,同时其耐温等级和机械性能也比聚氯乙烯好,其兼有机、电、热等优良性能。采用交联聚乙烯作为绝缘材料是比较适合的选择。导体外增加半导电层以均化电场,减少放电。 导体在加工过程中,可能会在表面产生缺陷(如毛刺),导体外没有半导电层,则在缺陷处产生电场畸变,容易产生击穿破坏绝缘。如施加半导电层后,由于半导电层的存在,导体表面电场得到均化,可有效避免绝缘击穿。电缆采用对称结构,以达到均化电场和各相均衡。对于四芯低压电缆,首先是改善绝缘线芯的排列,假如电缆的四个芯直接成缆,是不对称结构,如果将第四芯分解为三个截面较小的绝缘芯,把三大三小线芯对称结构成缆,二种情况相比较,对称型电缆各主线芯间距离相等位置固定,电缆内部电场均化,对绝缘比较有利。另外,完整的三相正弦供电系统,当三相电流平衡时,其中性线的电流为零,若出现三次谐波,则三次谐波的电流分量在中性线内不存在相位差,所以直接叠加成分量的三倍。若变频原供电对象是三个单相变频电机,而且处于三相功率分布平衡状态,则中性线电流更大,中性线截面应不小于相截面。为了取得很好的各相均衡特性,宜采用对称结构。屏蔽层接地措施 屏蔽层接地良好是抑制电磁波对外发射的必要条件,铜线编织屏蔽的接地方式较容易解决,而纵包铜带轧纹屏蔽需用夹具接地,夹具与轧纹铜管的接触面应当吻合,接地线由夹具尾端引出。外护套 这种电缆大多数敷设在室内,一般不需铠装,虽然不完全排除用聚氯乙烯护套,但选用高密度聚乙烯更为合适。但另一方面提高变频电源输出电压相对比较容易,提高电压后,中压变频电机功率可大幅度增加,此时电缆的电压等级也跟上。由于工作电压的提高,高频电磁波的发射能力明显增强,所以屏蔽结构要求更完善。在变频电缆工作条件下,同轴电缆是一种合适的结构,所以变频电缆的三个主线芯采用同轴结构,总屏蔽的结构与低压变频电缆相同。
BPGGP、BPGGP2、BPGGPP2..BPGGP3、BPGVFP、BPGVFP2、BPGVFPP2、BPGVFP3 、BPYJVPP、BPVVPP、BPFFP、BPFFP2、BPFFPP2、BPFFP3、BPVVP、BPVVP2、BPVVPP2、BPVVP3、BPYJVP、BPYJVP2、BPYJVPP2、BPYJVP3 、ZR-BPGGP..ZR-BPGGP2、ZR-BPGGPP2、ZR-BPGGP3、ZR-BPGVFP、ZR-BPGVFP2、ZR-BPGVFPP2、ZR-BPGVFP3 、ZR-BPYJVPP、ZR-BPVVPP、ZR-BPFFP、ZR-BPFFP2、ZR-BPFFPP2、ZR-BPFFP3、ZR-BPVVP、ZR-BPVVP2、ZR-BPVVPP2、ZR-BPVVP3、ZR-BPYJVP、ZR-BPYJVP2、ZR-BPYJVPP2、ZR-BPYJVP3 ..NH-BPGGP、NH-BPGGP2、NH-BPGGPP2、NH-BPGGP3、NH-BPGVFP、NH-BPGVFP2、NH-BPGVFPP2、NH-BPGVFP3 、NH-BPYJVPP、NH-BPVVPP、NH-BPFFP、NH-BPFFP2、NH-BPFFPP2、NH-BPFFP3、NH-BPVVP、NH-BPVVP2、NH-BPVVPP2、 NH-BPVVP3、NH-BPYJVP、NH-BPYJVP2、NH-BPYJVPP2、NH-BPYJVP3 ..ZRC-BPYJVPP、ZRC-BPVVPP、ZRC-BPFFP、ZRC-BPFFP2、
ZRC-BPFFPP2、ZRC-BPFFP3、ZRC-BPVVP、ZRC-BPVVP2、ZRC-BPVVPP2、ZRC-BPVVP3
BPGVFP2 BPGVFP2R BPGVP BPGVPP2,BPYJVP2-1KV BPYJVP2-10KV
交流变频调速技术是现代电力传动技术的重要发展方向,其应用领域也相应地进入了一个新的高潮,目前在磁悬浮列车、高速铁路、石油采油的调速、超声波驱油等领域也得到了大量的应用。有资料表明我 国变频器市场的增长速度每年都在10%以上。虽然变频技术的应用范围很广,但对于许多工程技术人员来说变频技术尚属于一门新的技术。同时,在此情况下也带来了电机和变频器之间电力电缆的结构设计和如何正确选用电力电缆等成为一个新的课题。鉴于这方面的原因,本文对变频系统用电力电缆结构、相关性能要求以及电缆的接线方式等方面作一介绍。供相关电缆制造和电气设计技术人员作参考。 2国外典型变频系统用电力电缆结构介绍 2.1ABB公司认可的电缆结构及相关要求 2.1.1主电电缆为满足工业环境的一般电磁辐射标准,主电电缆是三芯或四芯屏蔽电缆。电缆屏蔽的有效性规则是,屏蔽层越紧密电磁辐射的水平就越低。可以基于屏蔽层的结构或传输阻抗来评价它的有效性:屏蔽结构:电缆的屏蔽层采用铜丝缠绕在三芯或四芯相线的外面,带有一个螺旋形铜带,减小了屏蔽层孔的大小。屏蔽层传输阻抗:在100MHz范围以内,传输阻抗等于或小于1Ω/m。2.1.2电机电缆电机电缆屏蔽满足上述主电电缆屏蔽的低要求。屏蔽结构:电缆的屏蔽层至少包括一个铜带重叠的层和铜丝缠绕的层绕包在三芯或四芯相线的外面,也可选择铜丝编织作为屏蔽层。 变频系统用电力电缆这种电缆是由ANIXTER公司和原BICC公司联合研制开发的,在变频系统应用有着很多的业绩。主要原因是这种电缆采用3根相线+3根接地线的对称电缆结构,并在电缆的结构元件中设计了一层纵包焊接波纹铝护套作为屏蔽层,屏蔽层一是防止电磁干扰;二是具有极低的传输阻抗。 变频系统用电力电缆的具体规范是:导体:绞制裸退火铜; 绝缘:XLPE;成缆:采用3根相线+3根接地线的对称电缆结构。铝护套:采用连续密封纵包焊接的波纹铝护套,加工完成的铝护套 进行压力试验;外护:黑色的耐光照PVC。该电缆在变频系统中使用具有以下优点:铝护套提供了一个均匀一致的电场,该电场能够在电压倍增之前增大了电机和传动器之间的允许长度;高强度绝缘材料的使用,使得电缆能够承受由于反射导致的巨大电压峰值(2-3X);铝护套起到一种有效的屏蔽作用,从而减小了相邻电路间的串扰;铝护套为一种低阻抗的路径,可防止产生的高频噪音扩散到地面的电网; 外护套还起到一个绝缘的作用,可避免由于多个接地 点导致的接地电流的循环。3 不同电力电缆结构及EMC相关评价 EMC是电磁兼容的简称。IEC对其的定义是"设备或系统在其电磁环境中能工作正常且对环境中任何事物构成不能承受的电磁扰的能力"。EMC已成为产品认证领域的新热点,它将成为电气工程设计和研究人员在设计过程中考虑的主题。表1提供了屏蔽和不屏蔽,对称芯线和不对称芯线、平行芯线的各种电力电缆EMC评价。通过比较,3+3对称芯线带屏蔽的结构性能,经验也表明,采用对称屏蔽电缆也可以减少传动系统的电磁辐射,以及减小电动机的轴电流和由此引起的轴承磨损。表1的意义还在于,当某种原因未能使用屏蔽电缆的时候,将如何以EMC的角度去选择其它适用的电缆结构。 电力电缆的EMC评价 普通电力电缆的缆芯为平行绞合结构,且大都呈非对称形。有文章报导过,普通结构的电力电缆在一些特殊场所使用会暴露出许多问题。对于变频系统用电力电缆的缆芯结构一般倾向于图1(a)所示的三芯电缆,电缆缆芯呈对称形、并均佩有屏蔽层。电缆的导体常规变频系统用电力电缆的导体同普通电力电缆相同,特殊场所有采用软结构导体的需求(也即R型导体)。电缆的屏蔽 设有屏蔽层的电缆能够有效的抑制内、外界的电磁干扰,决定屏蔽层的屏蔽效果好坏常用屏蔽抑制系数来表示,屏蔽抑制系数为零说明电缆的屏蔽效果。 变频系统用电力电缆常采用的屏蔽方式有:铜丝编织屏蔽,铜带绕包屏蔽,铜丝缠绕屏蔽,铜丝铜带组合屏蔽,铜带纵包屏蔽(分轧纹与不轧纹),铝带纵包屏蔽(分轧纹与不轧纹),钢丝铜丝组合屏蔽。纵包结构的屏蔽效果要比绕包结构的好。此外,也有采用铝/塑复合带进行绕包或纵包作为屏蔽层,这种屏蔽层应用到变频系统用电力电缆的结构上是否满足抗电磁干扰的要求还值得商榷。选用何种屏蔽方式要依据电缆的使用场合而定。屏蔽层的截面一般根据使用要求 而定,通常屏蔽层的截面是相线截面的50%,也有要求和相线截面相等。 电缆的绝缘 普通电力电缆用绝缘有PVC、XLPE、ERP、CSM、CR/PCP、NBR等材料,从材料的绝缘性能和弯曲性能等方面来考虑,变频系统用电力电缆的绝缘使用较 多的材料为XLPE和ERP。 4.5电缆的电压等级目前变频系统用电力电缆电压等级均在6/10kV以下,市场用量较大的电压等级为0.6/1kV。4.6电缆的护套 变频系统用电力电缆的护套材料多为PVC、ERP、无卤低烟阻燃聚烯烃。
变频电缆与普通电缆区别 变频装置的节能效果十分明显,在大功率电机中采用变频调速电机,整个发电机组可节电30%。并且使用变频调速后,实现了电机的软启动,使电机工作平稳,电机轴承磨损减小,延长了电机使用寿命和维护周期。因此,变频调速技术在石油、冶金、发电、铁路、矿山等工业方面得到了广泛的使用。电缆对称性设计,对于1.8/3KW及以下变频电机电缆,和对称3+1芯和4芯电缆仅可用于主电源的输入缆,但使用对称结构电缆。变频器与变频电机问电缆均需采用对称电缆结构,对称电缆结构有3芯和3+3芯两种, 3+3芯电缆结构是将三大一小四芯绝缘线芯中第四芯(中性线芯)分解为三个截面较小的绝缘线芯,把三大三小线芯对称成缆,对于6/10kV变频电机电缆,该电缆结构与6/10kV普通电力电缆有所不同,普通电力电缆是将三根绝缘线芯采用铜带屏蔽后成缆,而变频电机电缆是由铜丝铜带屏蔽后挤包分相护套,然后对称成缆,对称电缆结构由于导线的互换性,有的电磁相容性,对抑制电磁干扰起到的作用,能抵消高次谐彼中的奇次频率,提高变频电机电缆的抗干扰性,减少了整个系统中的电磁辐射。屏蔽结构的设计,1.8/3kV及以下变频电机电缆的屏蔽一般采用总屏蔽, 6/10kv变频电机电缆屏蔽由分相屏蔽和总屏蔽构成,分相屏蔽一般可采用铜带屏蔽或铜丝铜带组合屏蔽。总屏蔽结构可采用铜丝铜带组合屏蔽、铜丝编织屏蔽、铜带屏蔽、铜丝编织铜带屏蔽等,屏蔽层截面与主线芯截面按比例。此结构的屏蔽电缆可抗电磁感应、接地不良和电源线传导干扰,减小电感,防止感应电动势过大。屏蔽层既起到抑制电磁波对外发射的作用,又可作为短路电流的通道,能起到中性线芯的保护作用。6/10kV变频电机电缆,考虑到电缆在使用过程中经常受到径向外力作用,在电缆屏蔽层外增加镀锌钢带铠装层(在屏蔽层和钢带铠装层之间加隔离套)。钢带铠装主要是作为电缆的径向机械保护层,同时它也起到附加性总屏蔽作用,特别是钢带铠装和铜丝、铜带屏蔽,是采用了两种不同屏蔽材料,在电磁波屏蔽上起到的互补作用,屏蔽效果将.电缆的主要制造工艺技求,在变频电机电缆生产过程中,绝缘线芯挤包工序、成缆工序等是关键的工序。 绝缘线芯挤包工序绝缘线芯的质量将直接影响到电缆的电气性能。为了提高电缆的质量,我们选择高电性能绝缘材料生产,例如1.8/3kv变频电机电缆,采用10kV交联绝缘材料,6/10kv变频电机电缆采用35kv交联绝缘材料,导体屏蔽、绝缘屏蔽和绝缘材料均采用了进口材料。在生产过程中,我们特别注重原材料的净化,屏蔽与绝缘材料挤包紧密,控制绝缘偏心度和绝缘外径的均匀一致,这样可减少界面效应,提高电缆电气性能。成缆工序变频电缆要求结构对称,成缆时保证绝缘线芯张力均匀,使成缆后的线芯长度尽量保持一致,否则会引起结构变化,导致电容和电感的不均匀性,影响电缆的电气性能。而且在具有退扭的成缆设备上完成。 变频电缆的结构包括三根主线绝缘线、三根零线绝缘线,在主线绝缘线和零线绝缘线外依次设置内绕包层、铜带层、外绕包层和外护套层,形成3+3线芯结构,使电缆具有较强的耐电压冲击性,能经受高速频繁变频时的脉冲电压,对变频电器起到良好的保护作用。产品用途,变频电缆主要用于变频电源和变频电机之间连接用的电缆,以及额定电压1KV及以下的输配电线路中,作输送电能用.电缆导体长期允许温度为90度,短路时温度250度3安装敷设环境温度不低于0度,固定敷设时环境温度不低于-10度.4电缆允许小弯曲半径不小于15D(D-电缆外径,mm) 产品性能交联聚乙烯绝缘、耐温耐候性好。低传输阻抗,电磁兼容性好。低工作电容良好的抗干扰和低辐射性能。对称的三芯电缆结构设计,具有比四芯电缆的传输性能。
耐火变频电缆NH-BPVVPP价格